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I. INTRODUCTION 

The  concept of t h e  Pinhole-Occulter Facil i ty has been studied extensively 
(1-5) and t h e  control system used to  point and s tabi l ize  i t  has also been well 
defined and studied (4-8). Both the scientific and engineering analyses have 
indicated t h e  need for highly accurate and s table  sensors to b e  used in both 
t h e  pointing and control of t h e  structure and in t h e  analyses of t h e  scientific 
d a t a  (4,6). The proposed sensors have been designated as a f ine line of sight 
(LOS) sensor and t h e  modal control sensor (MCS) (43. 

T h e  f ine line of sight (LOS) sensor has  been studied in the  Pinhole Occulter 
Facil i ty (POF) Phase A study (5) .  The basic configuration is a 5mm pinhole 
in t h e  mask of POF which casts a solar image on t h e  detector plane which is 

105 f t .  away. This would yield a solar image of 11.73 in. at t h e  detector.  
A montage of four photodetectors would then  sense this image and yield pointing 
errors. This basic 
LOS sensor has been built and studied in t h e  lab by N A S A ,  MSFC; .4 he!iosta? 
projected t h e  solar image onto a mask with a 5mm pinhole and a ser ies  of mirrors 
w e r e  used to extend t h e  path length of t h e  light to 105 f t .  Four and eight 
pinhole LOS sensors were  also proposed but  not  actually built or tested in t h e  
Phase  A study. 

This basic configuration of the sensors is shown in figure 1. 

A number of sensors f o r  t h e  internal alignment of flexible bodies have been 
proposed (5,9) but  have not been designed with any de ta i l  or analyzed in any 
sys temat ic  way. None of t h e  sensors a r e  exis tent  in hardware or software or 
have they been prototyped. None have been tested. Research in this a r e a  ap- 

pears  to be at a minimum even though much work is needed for f u t u r e  systems 
such as P/OF. 

T h e  purpose of this  report  is to access t h e  feasibility of optical type sensors 
for control  of flexible bodies. The accuracies of such systems w e r e  determined 

via simulation and t h e  sources of potential errors  were  designated. An initial 
laboratory design was e f fec ted  and preliminary results obtained. These results 
a r e  discussed critically with applications to fu ture  s tudies  and system designs. 

A number of errors  exist  in any measurement system. The chief errors  
occur  due  to noise, bias, quantization and variations 
proposed system, t h e  error  sources were analyzed and 

1 

in scale factor. For t h e  
a n  error  model developed. 

~~ ~~ ~~ -~ 



. 
SINGLE P I  "OLE 

TARGET 8 SENSORS 
I 

\ 1 

+ 
I 

I 

\, 

\ \ 

', 

\ 
\ 

ALIGNMENT 
TEST SETUP FOR 

A SINGLE PINHOLE 

TARGET & SENSORS - 

0 MIRROR 

2 ,  



11. BACKGROUND 

The Pinhole/Occulter Facility is designed to enhance t h e  studies of solar 
f lares,  t h e  solar corona, and cosmic X-ray sources. The  POF consists of a con- 
tinuous longeron astromast  which connects an  occulting mask to a de tec tor  
plane. The e n t i r e  assembly is located at t h e  bay of t h e  space shut t le  and mount- 
ed on a three  axes gimbal pointing system as seen in Figure 2. 

During launch and landing this boom is stored in a canister 6.42 meters  
in length 153. When fully deployed the boom is 32 m e t e r s  in length with a dia- 
m e t e r  of .3556 m. With t h e  occulter mounted at t h e  t i p  of t h e  boom the  t ip  
mass is 55 Ibs. Since t h e  t i p  mass is negligible compared to t h a t  of t h e  shut t le  
t h e  boom may b e  modeled as a fixed/free flexible beam problem. Approaching 
t h e  problem in this  manner it has been determined, f r o m  NASTRAN simulation 
run, t h a t  t h e  mas t  has modes as shown in Table  I [5]. 

The  candidate  modal control sensor (MCS) was proposed (5,9) f i r s t  by Dr. 
Frank van Beek and was basically t h e  system shown in figure 3. Here laser 
diode light sources are used to generate  two beams which are ref lected off 
t h e  back side of t h e  POF mask. Two such beams would b e  used: one  would 
be ref lected off a spherical mirror yielding both t i l t  and position information 
while t h e  o ther  beam would b e  reflected off a f l a t  mirror yielding only tilt 
information. 

The  MCS provides information to  t h e  act ive modal controller (5) on both 
t h e  position of t h e  boom t ip  of P/OF and its rotat ion relat ive to t h e  de tec tor  
plane. The sensors are constructed of laser light diode sources and diode array 
d e t e c t o r s  both at t h e  de tec tor  plane. Mirrors on t h e  back of t h e  mask, which 
is 32m from t h e  detector plane, reflect  t h e  light f r o m  t h e  sources to t h e  de- 
tectors. The sensors used with t h e  curved mirror would provide positional infor- 
mat ion combined with tilt. The  sensors used with t h e  f l a t  mirror would provide 
only t i l t  information. Positional information would b e  obtained analytically 
f r o m  these  t w o  measures. 

Positional information on both X and Y translations can be obtained using 
t w o  curved mirrors with de tec tors  for both X and Y f rom the  t i l t  + position 
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detector.  Alternately, a dished mirror could be used in lieu of t h e  two mirrors 
along with a n  array de tec tor  system for  obtaining t h e  s a m e  data.  A system 
for  measuring t h e  modal deflection about t h e  2 axis (boom roll) has  not  been 
presented to date. 

MODE NUMBER FREQUENCY (Hz) 

.064 

.064 

.355 

.751 
,751 
-I . ) I 1  
L .101 

2.36 I 
4.872 
4.872 

TABLE I BOOM FREQUENCIES 

The  optical  sensor sys tem must b e  capable  of providing def lect ion informa- 
t ion corresponding to t h e  f i r s t  four modes, at .064, .355, and .751 Hz. This 
information is used in a feedback control  system (5,7) which actively damps 
t h e  vibrations of t h e  beam. The enhanced stability of t h e  system with t h e  con- 
t rol ler  provides significant resolution enhancement ( 5 ) .  
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111. SYSTEM DESCRIPTION 

T h e  basic components of t h e  instrument system for each  axes include a 
laser,  lenses, mirror, and photodetector array. T h e  laser and photodetector 
a r ray  are to b e  mounted at t h e  detector plane while t h e  mirror will b e  mounted 
on t h e  underside of t h e  mask. The lenses will b e  placed between the  laser 
and t h e  mirror to colurnr*ate and focus t h e  beam onto  t h e  photodetector  array. 
I t  is desired t h a t  none of t h e  optics be placed between t h e  mirror and t h e  photo- 
d e t e c t o r  array since t h e  position of t h e  beam will vary due  to deflections and 
rotat ions of t h e  mask. The basic system schematic  is shown in Figure 4. 

For laboratory work t h e  photodetector is a linear a r ray  with 256 x 1 pixels. 
Each has  a separation of 25 micro meters (um). For  t h e  POF, a longer de tec tor  
with more  pixels or several staggered de tec tors  will be required. For t h e  purpose 
of this  study t h e  response of t h e  detector  was assumed to b e  linear. However, 
f u t u r e  work may need to investigate t h e  effects of pixel response nonuniformity 

(10). 

T h e  general  scheme is t h a t  t h e  laser will b e  bore sighted to ref lect  off 
t h e  mirror mounted to t h e  underside of t h e  mask and i l luminate t h e  de tec tor  
rnru,n+a IIIvuIILsd back 
to be used to illuminate de tec tors  for  both t h e  pitch and yaw directions. 

a: &!e detector plane. A team spl i t ter  wili allow a single 

I t  is desired to detect micrometer deflections and sub-arcsecond rotations 
of t h e  mask with respect to the  detector  plane. In order  to achieve results 
consis tent  with these requirements changes in position of t h e  beam illuminating 
t h e  detector, due  to a disturbance, must b e  resolved to sub-pixel accuracy. 
Specifically, position estimation to less than 1/10 of a pixel is desired. 

T h e  response of t h e  photodetector is proportional to t h e  intensity of t h e  
illuminating source. Assuming t h e  beam to be gaussian t h e  peak response will 
c o m e  f rom t h e  pixel where t h e  center  of t h e  beam is located. I t  is thus neces- 
sary to keep t rack  of t h e  center  of t h e  gaussian beam as it moves across t h e  
de tec tor .  

6 
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In general, any wave with a gaussian transverse amplitude distribution may 
b e  writ ten as, 

For this application it is for  more eff ic ient  to use t w o  linear arrays,  one for 
t h e  x-axis and one for  t h e  y-axis, rather than one area array. Two linear arrays 
256 x I require t h e  manipulation of only 512 responses compared to an area 
ar ray  256 x 256 which would require scanning 65,536 pixels. 

Since this project is concerned with linear a r rays  only o n e  axis need be 

considered at a time. The  general e q m t i o n  may then  b e  a l te red  to re f lec t  
t h e  difference between a known mean x' and the pixel response x.: 

I 

2 -2 - (x- -x )/w2. I4x)I = e I 

From t h e  general  formula given in Eq. 2 t h e  intensity of t h e  response of 
e a c h  pixel may b e  calculated relative to t h e  dis tance f rom t h e  center  of t h e  
beam. Both algorithms will use t h e  formula given in Eq. 2 to compute  pixel 
response. 

Since each pixel c a n  only give one response regardless of where  t h e  light 
o n  it, t h e  array has t h e  effect of discretizing t h e  gaussian beam. T h e  response 
of e a c h  pixel will b e  taken from the  c e n t e r  of t h e  pixel, t h e  position of which 
will be referred to as xi, where t h e  subscript i ranges f rom 1 to 256. The actual  
position of t h e  mean of t h e  gaussian beam, on t h e  array,  will be referred to - 
as x. 
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IV. BEAM CENTROID ESTIMATION 

Two methods of beam centroid est imat ion were  developed and simulated. 
T h e  first  method, Three Point Centroid, is lower in computational overhead 
than t h e  second method; Probability Density Centroid. Each method is presented 
and discussed. 

A. THREE POINT CENTROID 

A.1. METHOD 

The t h r e e  point centroid algorithm relies on t h e  response f r o m  the three  
most  highly illuminated pixels to es t imate  t h e  location of t h e  mean, X. Where 
X is an e s t i m a t e  of G. Four possible cases exist for  t h e  location of 2 with respect  

where x. is the  location of t h e  g r e a t e s t  response, xi-l 

t h e  responses at these  positions will be re fer red  to as yi, 

and x. to Xi’ Xi-1’ 1+ I’ 1 
is LL- Lllc location of t h e  pixel one to the ieit, and xi+l in t h e  location of t h e  pixel 
o n e  to the  right. 
yie1, and yi+l respectively. The four cases are: 

1. 

2. 

3. 

4. 

x is exact ly  between xi-, and x. ( see  Figure 51, then  
I 

X = (xiel+ x11/2; 

x is between t h e  le f t  edge of pixel xi 

and t h e  center  of pixel xi (see Figure 61, then 
R = xi - (1  - yi / y2) x 

Y2= Y i  - Yi+l and, 
x is the  pixel width; 

x’ is equal  to xi (see Figure 71, then 
2 = xi; and 

x’ is between t h e  center  of pixel xi 

and t h e  right edge (see Figure 81, then  
2 = x. + (1  - y2/ y l )  x. 

1 
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The algorithm uses a linear fit between t h e  response at y. and y as well 
as between yi and yi+l. Since t h e  pixels a r e  seperated by 25um. this does not  
introduce much error,  however, future  work will investigate t h e  possibility of 
using a higher order f i t  between these points. 

1 i- 1 

A.2. SIMULATION RESULTS 

The  algorithms presented in section IV. A.l. w e r e  simulated on an IBM-PC 
in FORTRAN. The computer  program is given in Appendix A. The  actual  beam 
controid, i ,  was varied f r o m  one edge of a n  individual pixel to t h e  other  edge 
and t h e  est imated centroid, X, was calculated t h e  error ,  G-X, was then calculated 
as a function of actual  centroid location, x'. Such calculations w e r e  performed 
at 1 W  beam widths of 20, 25, 30, 35, 40 and 45um. 

Results for t h e  three  point centroid algorithm may be seen in Fig. 9. The 
f igure shows six e r ror  curves where the vertical  axis represents t h e  e r ror  between 
t h e  es t imated  mean X and t h e  actual mean as it is varied across one pixel. 
Each curve represents a d i f fe rem spot size from 20 to 45 urn. in 5 urn. incre- 
ments. T h e  error is minimized when t h e  spot size is 25 um. or when 68% of 
t h e  intensity is focused on two pixels. For a spot size of 2 5  um., this results 
in pointing accuracy to 1/100 of a pixel width. 

These results were obtained without any measurement  e r rors  introduced 
Actual devices have bias and nonlinearity e r rors  of up to - 

These errors will be incorporated into a more  complete  
The  errors shown in Figure 9 are ,  therefore,  quanti- 

+ in to  t h e  system. 
7% between pixels (10). 

model during la te r  work. 
f icat ion errors. 

12 
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B. PROBABILITY DENSITY CENTROID 

B.l. METHOD 

The second algorithm uses probability theory to e s t i m a t e  t h e  mean. 
As mentioned previously t h e  array has t h e  effect of discretizing t h e  guassian 
beam, hence t h e  mean, x may be represented by a discrete random variable. 
With this  in mind t h e  e s t i m a t e  Sf of x may be computed as: 

n 
9 = c X . P .  

j=l 1 1  

where  P. represents t h e  probability density function of t h e  j th  pixel and x. 
1 1 

t h e  position of t h e  jth pixel. 

P(x,) = 
n 

i= 1 

i 

CY 

where  y. is t h e  response of t h e  jth pixel. 
1 

Obviously, as with any probpbilistic calculation, t h e  accuracy of t h e  e s t i m a t e  
The er ror  is also very dependent 

As t h e  spot  size increases i t  is necessary to sample more 
improves with t h e  number of samples taken. 
on  t h e  spot  size, W. 
pixels in order to g e t  t h e  same accuracy. 

The  initial goal has been to compute t h e  RMS e r r o r  between t h e  es t imated  
is moved across  a pixel. T h e  RMS e r r o r  may b e  computed by: 9 and x as 

where,  n is t h e  number of samples. 

14 



B.2. SIMULATION RESULTS 

The  probability algorithm of equation 3-5 was  programmed in FORTRAN 
on an  IBM-PC with numeric co-processor. The program is listed on  Appendix 
B. Once again, t h e  ac tua l  beam centroid, G, was varied f rom one  edge of one  
pixel to t h e  opposite edge. The estimated centroid, X, calculated as a function 
of beam centroid location as well as est imat ion error,  2 - 2. These  calculations 
w e r e  performed at t h e  beam widths shown. 

Results f o r  t h e  probability density algorithm are shown in Figure (10). This 
plot is equivalent to Fig. 9 in t h e  data represented. For  this set of plots t h e  
number of pixels sampled has been fixed at seven. As W increases, t h e  algorithm 
error also increases since t h e  number of pixels being - sampled is not increasing. 
For t h e  f igure shown, t h e  minimum error occurs when t h e  spot  size is between 
30 and 35um. 

Fig. 11 shows a plot of t h e  RMS e r r o r  versus t h e  number of pixels sampled 
f o r  t h e  probability density technique. The  family of curves  differ  by t h e  spot  
size W. As would be expected, as the number of pixels sampled increases t h e  
RMS error decreases. This figure also shows how larger t h e  spot sizes need 
more  pixels to b e  sampled to achieve the s a m e  error. 

Once again, non-linearities and biases were  not considered in t h e  calculation 
for Figure 10 and 11. Figure I I  gives t h e  quantization errors  as a function 
of number of pixels sampled and beam width. Bias and non-linearity error  will 
be incorporated into a more complete  model during la te r  work. 

15 
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C. ESTIMATION DISCUSSION 

This sect ion (111) has presented the concept  of applying opt ical  sensors for 
modal control. Consistent with t h e  results contained in other  references both 
algorithms a r e  capable of producing positional es t imates  to 1/10 of a pixel (11,12). 

However, t h e  simplicity of t h e  three point centroid makes it  more  favorable 
for  implementation. The three  point centroid requires at most t h r e e  multipli- 
cat ions and t h r e e  additions per estimate. Hence, it  is t h e  faster of t h e  t w o  
algorithms. 

Future  work for  modeling t h e  detector  will include compensating the  pixel 
response nonuniformities and biases. These nonunif ormit ies  may be measured 
in t h e  lab for  any particular pixei array. Future  work will also include noise 
modeiing in t h e  de tec tors  and estimation system. 



V. LABORATORY DESIGN AND PRELIMINARY RESULTS 

A 1/20 scale model was developed in t h e  lab f o r  t h e  MCS. A schematic  
of this system is shown in Figure 4. A total pathlength of 3m was demonstrated 
in UAH's Department  of Electrical  and Computer Engineering Optics Lab. Photo- 
graphs of t h e  system have been supplied to t h e  Contract ing Off icers  Technical 
Representat ive at MSFC. 

For optimal estimation of t h e  centroid using t h e  t h r e e  centroid algorithm, 

a beam width of 25um is necessary. In t h e  lab, t h e  smallest  beamwidth obtained 
w a s  75 um due to t h e  availability of precision optics. At t h e  pixel center  and 
- 10 um., t h e  accuracy was - 1 um. At  - 5 um f rom center ,  t h e  accuracy was 
- 2 um. These accuracies are due  t o  t h e  gradations of t h e  adjusting micrometer  
on  t n e  pixel array. In t h e  lab setup, t h e  mirror was fixed and t h e  de tec tor  
a r ray  adjusted. Readings w e r e  taken at  0, - 5 um. and 

+ + + 
+ 

-i 10 um. 

T h e  d a t a  a r e  presented in Figure 12. This figure compares  t h e  experimental  
resul ts  versus t h e  theoretical  (simulation) results using t h e  three  point centroid 
technique. The  horizontal variations are due  to t h e  micrometer accuracy while 
t h e  vertical  variations a r e  due to noise, bias and non-linearities in t h e  system. 
The  system is drastlra!!y affected % &i iiiotioii iiiu'ticed by sound vibrarions 
and tempera ture  flucuations in t h e  lab. Variations in s t ray  light also influenced 
t h e  readings. I t  is interesting to note, however, t h a t  t h e  two sets of data a g r e e  
to a large e x t e n t  and follow t h e  same general  trends. The  lab data a r e  repeated 
in Table  2 and clearly show t h a t  except at x' = -5 um. and -10 um. t h e  position 
of t h e  centroid can  b e  est imated to within 1/10 of a pixel. 

TABLE 2 
Lab Data in um 

K 
-5 

-10 

+ 5  

+ 10 

K min K 
-8.824 -7.8 I25 

-12.5 -1 1.875 
2.88 4.46 
9.2 I 10.00 

19 

j7 max 
-6.6666 

-1 1.18 

5.83 
10.714 
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VI. DISCUSSION AND CONCLUSIONS 

Figure 12 and Table 2 clearly demonstrate  t h e  feasibility of t h e  proposed 
modal control sensors. Without any corrections for bias or non-linearities, t h e  
lab system responded to nearly the  required accuracy. With bias and non-linearity 
corrections, t h e  system could easily respond to t h e  required degree  of accuracy. 
With noise reduction techniques such a monochromatic fi l tering at t h e  pixels, 
t h e  s t ray light problem also could be minimized. Using precision opt ics  along 
with corrections and noise reduction on accuracy of 1/20 a pixel could easily 
b e  obtained. 

The  weak link in t h e  system is t h e  optics. Long focal  length lenses of 
quality a r e  expensive and difficult  t o  obtain. In addition, if t h e  optical  beam 
is off axis, aberations are created and t h e  beam is no longer Gaussian. An 
a i t e r n a t e  focusing scheme needs to be used. Curren t  investigations are centered  
on using linear zone plates. Zone plates do not  require  c r i t i ca l  alignment and 
the i r  manufacture  is easier than long foca l  length lenses. Their use  in a full 

sca ie  system is more iikeiy, therefore. 
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VIII. APPENDICES 

A. Appendix A: Three Point Centroid Program 
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$NODEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

vl.l * 
* * 

* 3 PTCEN . FOR 

* Author: Jack Carter Jr. * 
* 
* 
* 
* 

* 
The following program is designed to find the mean of a 
Gaussian waveform which is illuminating a linear photo- * 

* '  * detector array using a three-point centroid algorithm. * * * 
* Definition of variables: * 
* W = Beam Spot Size * * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

YI = Intensity at the given mean of the light source 
YIP1 = Intensity one pixel width to the right 
YIMl = Intensity one pixel width to the left 
XI = The given posistion of the mean of the light source 
XIPl = The position one pixel width to thf! right 
XIMl = The position one pixel width to the left 
DELX = Pixel width (25um) * 
DELYl = (YI - YIM1) * 
DELY2 = (YI - YIP1) * 
ALPHA = Constant for tuning results 
XBAR = Input position of the mean of the light source 
ERR = The error between the estimated mean and XBAR * 
MEAN = The estimated mean position 

*********************************************~************************ 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 

IMPLICIT REAL(A-H,O-2) 
REAL MEAN 

Initialize values for linear array dimensions. 

DELX = ,000025 
ALPHA = .s 

Open file to store plot data. 

OPEN ( 3, FILE= ERROR. DAT , STATUS= NEW ) 

Input the beam spot size W and the pixel number of the 
location of the mean. 

WRITE(*,*) 'INPUT THE PIXEL NUMBER FOR THE LOCATION ' 
WRITE(*,*) 'OF THE MEAN. (BETWEEN 1 AND 256)' 
READ(*,*) J 
XI = DELX * (J - . 5 )  
XIMl = XI - DELX 
XIPl = XI + DELX 

Set up a loop to allow W t o  vary, thus generating a plot file 
which will have several curves of ERROR vs XBAR with the 
parameter W 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

w = . 000020  
DO 200 J=1,6 

WRITE(*,*) 'INPUT W. 
READ(*,*) W 

Initialize XBAR to the beginning edge of the pixel so that 
it may be varied across the pixel and the mean estimated. 

XBAR = XI - (DELX/2) 
Vary XBAR across the width of one pixel, in lum steps 
(25um) and plot the error (MEAN - XBAR) vs XBAR. 

DO 100 I=1,25 

Now evaluate the Gaussian function Y at the three positions of X. 

* 
-f; Evaluate 

DELY 1 
DELY 2 

* 

* 
* Now that 

YIMl = Y(XIMl,XBAR,W) 
YI = Y(XI,XBAR,W) 
YIPl = Y(XIPl,XBAR,W) 

the changes in YIM1, YI and YIP1. 

= YI - YIMl 
= YI - YIPl 
the function has been evaluated there are four cases * 

* 
* (1) YI = YIMl > YIPl 
* (2) YIPl = YIMl < YI 
* ( 3 )  YIMl < YIPl < YI 

which must be considered in order to find the actual position 
of the mean of the light source. 

* ( 4 )  YIMl > YIPl < YI * 
IF(YI.EQ.YIM1 .AND. YIMl.GT.YIP1) GO TO 10 
IF(YIPl.EQ.YIM1 .AND. YIM1.LT.YI) GO TO 20 
IF(YIMl.LT.YIP1 .AND. YIP1.LT.YI) GO TO 30 
IF(YIMl.GT.YIP1 .AND. YIP1.LT.YI) GO TO 4 0  * 

10 MEAN = (XI + XIM1)/2 

2 0  MEAN = XI 

GO TO 50 * 
GO TO 50 * 

30 MEAN = XI + DELX * (1 - (DELY2/DELY1)) * ALPHA 
GO TO 5 0  * 

4 0  MEAN = XI - DELX * (1 - (DELYl/DELY2)) * ALPHA 
GO TO 50 * 

* Write the output to the f i le .  
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* 
50 ERR = MEAN - XBAR 

RSSI = RSSI + (ERR * ERR) 
WRITE (3,800) XBAR, ERR 

* 
800 FORMAT(2E15.7) 

100 CONTINUE 
XBAR = XBAR + .000001 

* 
* Increment W * 

W = W + .000005 
200 CONTINUE 

RSS = SQRT(RSSI)/I 
WRITE(*,*) 'THE RSS ERROR IS ' , R S S  

CLOSE (3) 
STOP 
END 

* - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* FUNCTION Y vl.l * 
* * I  
* Author: Jack Carter Jr. * >  
* date: 8/9/86 * .  

* given values of X, XBAR and W. * 
* Definition of variables: * 
* N U 4  = - ( ( X  - XBAR)**2) the numerator of the function * 
* DEN = W * W the denominator of the function * 
********************************************************************** 

* * 
* The following function evaluates the Gaussian wave front for * 

* * 

* * 
REAL FUNCTION Y(X,XBAR,W) 
REAL NUM, DEN 
REAL X, XBAR, W 

NUM =. (X-XBAR)**2 
DEN = W * W 
Y = EXP(-(NUM/DEN)) 

RETURN 
END 

* 

* 
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B. Appendix 8: Probability Density Centroid Program 
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$DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* * 
* PROBW . FOR v1.1 * 
* * 
* Author: Jack Carter Jr. * 
* The following program is designed to find the mean * 
* of a gaussian wavefront using the probability * 
* density function. The output will consist of a plot * 
* mean minus the actual vs the actual mean as it moves * 
* across one pixel. The output will be a family of * 
* curves which vary with the spot size W. * 
* Definition of variables: * 
* W = Beam Spot Size * 
* Y(1) = Array to store intensity levels * 
* XI = Incremental value of X (incremented across * 
* the photodetector) * 
* . XBAR = Input, Desired mean * 
* TEMP = Temporary variable tt store fntermodiate * 
* DELX = Width of the photodetector (in micrometers) * 

* file which will allow the user to plot the estimated * 

* * 
- 

* values. * 
* * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

IMPLICIT REAL (A-H,O-Z) 
REALMEAN, RL 
INTEGER N1, N2, J, If, L, ITEMP 
REAL YI(26) * 

* 
* 

* 
* 
* 
* 

* 
* 
* 

Note: all dimensions are in um. 

DELX = .000025 

Input the position of the 
to be sampled. 

WRITE(*,*) 'INPUT THE 
WRITE(*,*) 'BETWEEN 1 
READ(*,*) N 
WRITE(*,*) 'INPUT THE 
READ(*,*) AN0 
N1 = N - NINT(ANO/2) 
N2 -- N1 + (AN0 - 1) 

centroid and the number of pixels 

Open files for output data. 

POSITION OF THE MEAN ' 
AND 256 . '  

NUMBER OF PIXELS TO BE SAMPLED' 

OPEN(3,FILE='ERRDAT.DAT1,STATUS='NEW') 
OPEN(4,FILE='RSSDAT.DAT',STATUS='NEW') 
OPEN(5,FILE=@RSSPLT.DATg,STATUS='NEW') 
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Vary the value of the beam spot size in order to generate 
a plot file to allow for multiple plots of ERROR vs XBAR 
while varying the parameter W. 

w = .000020 * 
DO 300 KK=1,6 
WRITE(4,*) 'W = I,W * 

* 
* 
* 

Set up a loop to increment XBAR across the pixel where 
the centroid is located, in um. increments. 

XBAR = (N-l)*DELX * 
* 
* 
* 

* 
* 
* 

DO 40 I1 = 1,25 - 
Reinitialize variables for next calculation. 

TEMP = 0.0 
x = 0.0 
J = O  
K = O  

Loop to compute the sum of the responses Yi. 

DO 10 I=Nl,N2 
J = J + l  
XI = DELX * (I - -5) 
YI(J) = Y(XI,XBAR,W) 
TEMP = TEMP + Y I ( J )  

10 CONTINUE * 
* Compute the product of X i  and Yi * 

DO 20 JJ=Nl,N2 
K = K + 1  
PDF = YI(K) * (DELX * (JJ -.5)) 
X = X + PDF 

* Now calculate the mean 

20 CONTINUE * 
* 

MEAN = X / TEMP 
ERR = MEAN - XBAR 
WRITE (3,700) XBAR, ERR 
WRITE(4,900) NZ-Nl+l,XBAR,ERR 
XBAR = XBAR + .000001 
RSS = RSS + ERR*ERR 

40 CONTINUE 
WRITE(4,*) 'THE RSS ERROR IS ',SQRT(RSS)/(II-2) 
WRITE (5,700) REAL(KK) , SQRT (RSS)/ (11-2) 
W = W + .000005 
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300 CONTINUE 

7 00 FORMAT (2E15.7 ) 
900 FORMAT(I5', 'E15.7', 'E15.7) 

CLOSE (3) 
CLOSE (4) 
CLOSE (5) 
STOP 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* FUNCTION Y vl.l * 
* Author: Jack Carter Jr. * 
* date: 8/9/86 * 

* given values of X, XBAR and W. * 
* Definition of variables: * 
* NUM = -(  (X - XBAR) **2) the numerater cf the function * 
* DEN = W * W the denominator of the function * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* * 
* * 

- * * 
* The following function evaluates the Gaussian wave front for * 

* * 

* * 
REAL FUNCTION Y (X,XBAR,W) 
REAL NUM, DEN,' X, XBAR, W * 

* 

NUM = (X-XBAR)**2 
DEN = W * W 
Y = EXP(-(NUM/DEN)) 
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